Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

نویسندگان

  • Matthias Bieligmeyer
  • Franjo Artukovic
  • Stephan Nussberger
  • Thomas Hirth
  • Thomas Schiestel
  • Michaela Müller
چکیده

Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of biomolecule–copolymer hybrid nanovesicles as energy conversion systems

This work demonstrates the integration of the energy-transducing proteins bacteriorhodopsin (BR) from Halobacterium halobium and cytochrome c oxidase (COX) from Rhodobacter sphaeroides into block copolymeric vesicles towards the demonstration of coupled protein functionality. An ABA triblock copolymer-based biomimetic membrane possessing UV-curable acrylate endgroups was synthesized to serve as...

متن کامل

Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation.

Lipids and block copolymers can be individually assembled into unsupported, spherical membranes (liposomes or polymersomes), each having their own particular benefits and limitations. Here we demonstrate the preparation of microscale, hybrid "lipopolymersomes" composed of the common lipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and the commercially available copolymer PBd-b...

متن کامل

Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes.

Block copolymer amphiphiles that self-assemble into membranes present robust and functionalizable alternatives to biological assemblies. Coarse-grained molecular dynamics shows that thick bilayers of A-B copolymers accommodate protein-like channels and also tend to regulate transport. This occurs as flexible, hydrophilic A chains insert into the pore and obstruct water entry. A-B-A triblocks th...

متن کامل

Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs) via electroformation. He...

متن کامل

High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes

The exquisite selectivity and unique transport properties of membrane proteins can be harnessed for a variety of engineering and biomedical applications if suitable membranes can be produced. Amphiphilic block copolymers (BCPs), developed as stable lipid analogs, form membranes that functionally incorporate membrane proteins and are ideal for such applications. While high protein density and pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016